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HYPERSONIC AERODYNAMIC CHARACTERISTICS OF A FAMILY
OF POWER-LAW, WING-BODY CONFIGURATIONS

By James C, Townsend
Langley Research Center

SUMMARY

The configurations analyzed are half-axisymmetric, power-law bodies surmounted
by thin, flat wings, The wing planform matches the body shock wave shape. Analytic
solutions of the hypersonic small disturbance equations form a basis for calculating the
longitudinal aerodynamic characteristics. Approximate boundary-layer displacement
effects on the body and wing upper surface are included. Skin friction is estimated by
using compressible, laminar boundary-layer solutions. By using an effective body shape,
the method is extended to small angles of attack. Three basic theoretical assumptions
are made: (1) the body is slender, (2) the shock wave is strong, and (3) the Mach number
is large. In comparisons with available experimental data, good agreement was obtained
when these assumptions were satisfied. The method is also used to estimate the effects
of power law, fineness ratio, and Mach number variations at full-scale conditions. The
implementing computer program is included.

INTRODUCTION

Much research has been devoted to the hypersonic flow about half bodies of revolution
mounted beneath a thin wing. Theoretical studies (refs. 1 to 3) and experimental work
(refs. 4 to 7) show that with half-cone bodies these configurations combine good stability
characteristics with high values of maximum lift-drag ratio. Replacing the conical
bodies with those having power-law profiles generates a larger class of configurations
and one which is more representative of aircraft shapes, Low wave-drag bodies in the
hypersonic regime are generated by power-law curves with exponent in the range 0.5 to
0.8. (See refs. 8 to 12.) These bodies have the additional advantage of better volume
distribution than cones.

The purpose of this study was to develop a method for calculating the longitudinal
aerodynamic characteristics of power-law bodies with reflection-plane wings. The method
applies to configurations consisting of half of an axisymmetric power-law body mounted
beneath a thin wing whose planform matches the theoretical body shock shape at zero angle
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of attack, Small-disturbance theory, with small perturbations for Mach number and
boundary-layer displacement effects, provides a means for calculating the pressure field
and shock-wave shape, This pr'essure field is integrated analytically to obtain the forces
and moment on the body. Small angles of attack are simulated, and laminar skin friction
is calculated. The computer programs which have been written to implement this method
are presented in an appendix.

SYMBOLS
aq : shock-wave perturbation constant
. uw/ e
C Chapman-Rubesin constant, ———
TW/ Too
. Axial force
Ca axial-force coefficient, ————
QoS
L D
Cp drag coefficient, ——
Q.S
- s L
Cy lift coefficient, ——
q.5
Pitchi t
Ch pitching-moment coefficient, e 111g nilomen
q.5¢
Cy normal-force coefficient, Normal force
oS
CNp normal-force coefficient of body
]
CN,w normal-force coefficient of wing
- P-D,
Cp pressure coefficient, =
o0
c mean aerodynamic chord, taken as ¢y, = 2
m+ 2
D drag
E constant in boundary-layer displacement thickness



oyl

similarity static-pressure variable

fineness parameter,

Tp, B
boundary-layer profile parameter
integral of F from body to shock
lift
length
free-stream Mach number

exponent of power-law body shape

dimensionless static pressure, -
262qno

average wing upper surface pressure

free-stream dynamic pressure

f

dimensionless shock-wave radius,

ol Z

]

=}

free-stream Reynolds number,

dimensiconless radial coordinate,

&,

projected planform area

distance from nose to upper surface center of pressure

temperature

free-stream axial velocity



Subscripts:

B

volume of body

dimensionless axial coordinate,

]

angle of attack relative to body axis

ratic of specific heats

- shock-wave slope parameter, &= -E_é = —1—-—
z fry,
Rk
dimensionless boundary-layer displacement thickness, —g?
small perturbation parameter for Mach number, ( 1 )2
8M_,
, . do’/ds
small perturbation parameter for boundary-layer displacement, 3 /dg
r
b

similarity form of radial coordinate, E‘"_

0

shock-wave angle
viscosity coefficient

similarity form of axial coordinate

dimensionless density, _-_'0-—
pDO

at base of configuration, x=1

body



€ effective body shape
max maximum

(L/D)jpax maximum lift-drag ratio

0 zero-order similarity solution (61 - 0)
1 first-order similarity solution (e,% << 1)
0 free-stream value

W wall

An asterisk denotes that the quantity includes boundary-layer displacement effect.
A bar over a symbol denotes a dimensional quantity.

THEORY

The method applies to the general configuration shown in figure 1(a), It consists of
one-half of a body of revolution mounted beneath a thin wing at an angle of attack of 0°,
By assumption, the wing acts as an endplate to maintain the axial symmetry of the flow
about the body. The wing planform matches the shock-wave shape about the full body,
and the body pressure field acts on the wing to provide additional lift. The method is put
together from a series of pieces in order to arrive at the final aerodynamic coefficients.
The basis for the development is the result in hypersonic slender-body theory that for
power-law bodies, there are similarity solutions to the inviscid flow equations in the hyper-
sonic limit, (See ref. 13.) Independent small perturbations are made to account for Mach
number effects and for laminar boundary-layer displacements, (See ref. 14.) To simulate
the effects of small angles of attack, a simple substitution of an effective body is made.
The resulting equation for the pressure distribution is integrated analytically to obtain the
pressure forces and moments on the body. Then the laminar skin-friction drag is calcu-
lated by using the analytic pressure distribution. The development outlined is explained
in more detail in the following sections.

Inviscid, Power-Law Body Solution

H, in inviscid hypersonic flow about a slender body, the velocity changes in the free-
stream direction are neglected compared with the transverse flow velocities, the hyper-
sonic small-disturbance equations result. When a strong, power-law shock wave occurs
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in such a flow at infinite Mach number, these equations indicate that the body generating
the shock also has a power-law shape. (See ref. 14.) Thus in figure 1(a), the shock wave

= 5(_.) is generated by the body 7 =¥ f) . In dimensionless form (fig. 1{b)) these

l l

relations become Rg=xM and 1y, = 5lf XM, When the dependent variables are expresser
in terms of the slope of the shock wave, the axial variations may be separated from the
radial variations of the variables to obtain similarity equations. Thus in similarity varia-
bles £=x and 5= r/RO; Ry = gm, Iy = nb!;'m, and the dimensionless pressure field is

2 : .
dR, -
Py = Fo(n)(—()) = szO(n) gz(m 1). Here Fo(n) is found by solving a set of ordinary
dg
differential equations in 7. (See refs. 14 and 15.)

In order to relax the restriction to infinite Mach number, Kubota (ref. 14) applied
a small perturbation procedure. This procedure results in the following first-order pres-
sure distribution and shock-wave shape about the power-law body ry = nbxm

py(&m) = m2F(n) £2M-1) ¢ m2F, () (1)

Rl(g) = Em [1 + 613152(1-111)] (2)

Here ¢ = (Mmé.)‘2 is a small parameter corresponding to the hypersonic strong shock
assumption M, sin 6 >> 1. The necessity of simultaneously satisfying 52<< 1 and
612 <<'1 puts a strong requirement on the Mach number. That is, the present method is
limited to M, >> 1 so that with a slender body 52 << 1, the parameter ¢ 1 isstill
small. Figure 2 shows the relationship between 8, €1,and M, and can be used to

check on € for a given Mach number and body shape (by noting that & = 1/ fr,)-

The perturbed pressure variable F 1(m and the shock-wave displacement constant
aj are found from a second set of ordinary differential equations. (See refs. 14 and 15.)
The two sets of differential equations involve only m and ¥ as parameters, and thus
they can be solved over the needed range of values and the tabulated results used in appli-
cations to flow problems, Table I and figure 3 present the results needed for the current
application, They were found by numerical integration techniques similar to those
described in reference 16, (With acess to modern digital computers, the exact numerical
computation has become at least as easy to carry out as the approximate technique which
gives ref, 16 its t1t1e ) The integrated pressure Jp and pressure perturbation J 1 are

defined as Jg = 5 Fo(n) dn and Jqy = S‘ F1(n) dn; they will be applied to the wing

undersurface, o



Corrections for Boundary-Layer Displacement

In order to make a corrected approximation accounting for laminar boundary-layer
growth, a perturbed body shape r,*(x) = r, + 6* is used. The displacement thickness of

9 .
the boundary layer is given by &% = T mZb Ex3/2-M  (based on a result from ref, 17 for
mn .
2

adiabatic wall conditions). Here E = y-1 M, f"In 8- 2m ) ¢ which is
2y b o mZyam - 1| R,z Fo{™)
very small for large Reynolds numbers. By using the appropriate value for I (the sum
of the transformed displacement and momentum thicknesses in refs. 18 and 19), this
relation for 5* may be applied for any constant wall temperature. If the flow outside
the boundary layer is considered to be the inviscid flow about the ""perturbed body"
rb*(X), the corresponding pressure distribution and shock shape are approximated as
follows. In terms of the body radius ry, = nb.gm, equations (1) and (2) become

Fu(n) (dr 2
py = m2Fo(me2(M-1) 1 ¢ m2F () = —f—;(d—f) + eqm2Fy ()

and

_ r dr -2
R:m[l 2(1m)J=_b1 1 dry
1 ¢ +a161§ 7 +ay€q i T

By replacing ry, by rp,* (as in ref. 14), these equations become

Fo(m [dr,”
pl*(s,n)=L(rb> + em?F(n) = m2e20 V(1 + VPR ) + em2F () @3)

nbz dg
and 3
* *\—
r dr
(N mry, dé
* 2(1-
= ém[l +S—b +ageqf ( mil + terms of order ¢e* @)
*/4 %-Zm 3
Here e* = 3—6'%—% = E¢ << 1 except in a small region near the nose when m > T
Th



Simulation of Angle of Attack

The pressure distribution along the pitch plane of the body at angle of attack is
assumed to be the same as that about an equivalent axisymmetric body. This effective
body is at zero angle of attack, It has a power-law profile which closely matches the
windward element in the plane of symmetry of the actual body at angle of attack. Figure 4
shows the relation between the real and effective bodies, and the following expressions are
used to obtain the effective body parameters

Xe'—‘XCOSG!—I'bSln(I

T =X si r
b,e Xsna+rb0050€

(5)
7 1- %tan o h
fo =3 € = = {tan @ << 1)
rb,e,B tan +_;_ 1 +ftan o
and
1P, 6/, 1,6)
e = = =
lﬂge(xz,e/xl,e>
so that
- mg
rbse ~ 1 ie
Ze fe ze

Here X; and Xy are points selected to provide a good approximation. A lower limit
of mg 20.51 was set to avoid computational problems associated with the theoretical
limit as m - 0.5.

The approximating pressure distribution along the body at angle of attack is then

2 (me -1)

p* =m—62<1 202E %-2%)5- F 8
1,e(nb,e) K t o heXe 0(?7b’e)xe + Key 1(?71)’8) (6)

where



and E; is the same as E with m, replacing m. |The factor &« appears since

S -
x _Ple 1 Ple . , -
Pi = = 2=_| By following reference 6 which uses a similar angle-of-attack
Le 2462 X 9q5 2
e

method for half-cone wing configurations, this pressure distribution is applied over the
entire body surface. The pressure distribution under the wing from 7, =7 = 1 is
assumed to be the same as that in the flow field of the effective body from b, e =n=1.
Since this equivalent body approach does not attempt to account for the actual flow under
the wing, its use necessarily limits the present method to very small angles of attack.
For this reason all calculated resulis presented are in the range -;— 2 v =2. Instead of
calculating the wing upper surface pressure in detail, an average pressure is used. This
value is taken from the charts of reference 20, which includes viscous-interaction effects
on the pressure and skin friction on delta wings at angle of attack in hypersonic flow.
Since the viscous effects are approximately proportional to x-1/ 2, delta-wing results for

which SSI x-1/2 4r dx and the span equal to those of the power-law wing are used. The

base pressure is set equal to free-stream static pressure p_.

Skin Friction

The skin-friction contribution is the remaining term of the axial-force coefficient to
be evaluated. In this report laminar boundary layers are assumed for all calculations.
The wetted area is divided into the body surface, wing upper surface, and the exposed part
of the wing underside, each of which is treated separately. For the skin-friction calcula-
tions for the body and the wing lower surface, the longitudinal pressure distribution is
modified in the nose region by keeping a higher order term in the pressure equation.
These calculations then use a scheme given in reference 18 for incompressible laminar
boundary layers. Two transformations of the independent variables allow its use with the
two-dimensional compressible laminar-boundary-layer similar solutions of reference 19
for the present cases. For the body, the Mangler transformation (ref. 18) changes the
axial coordinate to that for an equivalent two-dimensional body. For the relatively small
exposed-wing undersurface, a simplified flow model is applied, that is, streamlines are
taken as parallel to the body surface, and the pressure is taken as varying parabolically
from the body to the shock wave. In both cases the Stewartson transformation (ref. 19)
changes the surface length and exterior velocity distribution to the form for an equivalent
incompressible flow; the method of reference 18 is then applied. For the wing upper
surface, the average skin friction from the appropriate charts of reference 20 is used just
as for the upper surface pressure.

Longitudinal Aerodynamic Coefficients

Integrations of the appropriate components of the surface pressures over the body
and wing give expressions for the axial force, the normal force on the body and on the



wing, and the pitching moment. In coefficient form the expressions are {(to first order in
¢ and €%):

7{m + 1)<‘52me2 1 4V2Ee £1K 1
= F — |F -——=[Y+C
Ca 8 2mg +m - 1) Tam o O(nb,e) T3 l(nb,e) ymez AF

e — B
Sb
2.2 2
2mg~8 1 4v2E, 1
CN,b - 5 {(Zme “m-1 Zm+l m + I)Fo(nb,e) tax Fl(nbae) ) v 2
K == e
Sp

c =2me262 1 +4”2Ee (1-m 5. 4.2 4mE
Nw K Zmg+m -1 2m+1 \l"nb,e 0,e ¥+ 13 - 2m)}{dme - 2m + 1)
a 1-179 1-
+—-EI—1 {m o+ 1) + ¢k b Jle——nb
2mg - m + 1 l'nb,e ; ,},me2

CN = CN,b + CN',W - a.
5 .
(m + 1){m + 2)m 252 4°E
Cry = - ) _ € 1 1 + £ mFO(rjb )
. 8¢ 2\28mg +3m -2 fm- 1 e
Spty

1 1 1 412E, 1-ny dge
4 _|F - —_ B “Y¢€
* 3f2 [l(ane) },mEZ} * (Zme + m * 2m + 3 FO (nb!e) * 1 -

Ts,e b

2 |_ 4mE £1ag ek
F
+(y+ l)nbMS - 2Zm){dmg - 2m + 8) * 2ng - m +2:| +m+2[1(nb,e)

+1—T}b Jl,e_ 1 +ﬁu'pm3
1- e Tmezﬂb 1o €

The pitching-moment reference center is at the nose of the body (x = 0). For the corre-
sponding zero-order and inviscid relations, set €1 =0 and E =0, respectively. Note

that the factors T and m + 1 are associated with the actual planform area used in
normalizing the coefficients.

These equations have been programed for calculation by a high-speed digital com-
puter. The program includes the skin-friction calculations on the body and the wing
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undersurface, There is a subsidiary program which computes the parameters required
to get the upper surface pressure and skin friction from reference 20, The appendix
presents an exposition of these programs. The basic program requires only 21600 octal
storage locations after compilation on the Control Data Corporation 6600 computer at
the Langley Research Center and runs an average case with 11 angles of attack in about
3 seconds of central processor time,

DISCUSSION OF RESULTS
Evaluation of Method

There have been no reported comprehensive experimental evaluations of the power-
law, wing-body configurations to which the theoretical analysis applies. The data avail-
able fall into two groups: (1) drag of complete power-law bodies of revolution (no wing)
at several Mach numbers and fineness ratios, and (2) aerodynamic characteristics of
conical {m = 1,0) wing-body configurations. Only a small part of these data satisfy the
high Mach number, the slender body, and the strong shock criteria required for strict
application of the similarity theory, Data for which the criteria are not well satisfied
can be used to determine the limits for practical application of the method.

Power-law bodies of revolution.- The zero-angle-of-attack drag of these bodies is
already calculated as part of the present method. Figure 5 contains four sets of compari-
sons with experimental data. The drag coefficients have been based on the length squared
as reference area in each case to form a uniform basis of comparison. In parts (a) and (b)
of figure 5, the ratio V/l3 was held constant and yielded a small variation in the fine-
ness ratio as the power-law exponent was varied to obtain the different bodies for the tests.
Figure 5{(a) is for tests at Mach 21.6 in helium (ref. 12). The agreement is very good.

The coefficients in figure 5(b) are for tests at Mach 10,03 in air (ref. 21); the calculations
are in good agreement with experiment, Figure 5(c) shows good agreement at Mach 10.35

for a series of power-law bodies having nearly equal fineness ratios. In figure 5(d) the
data for the same bodies at Mach 5.96 is not predicted.

The range of agreement obtained in figure 5 should be considered in light of the
basic assumptions of the theory as discussed in the previous section. For this reason
the pertinent parameters are shown in the legends of figure 5 and also in figure 2, Since
§ << 1 for all cases, the slender body condition is well satisfied. The hypersonic assump-
tion (Mw >> 1) is generally considered to be satisfied for M > 5 and so should not cause
the discrepancies in figure 5, However, the strong shock assumption (512 <L 1) is satis-

fied only for figure 5(a), where the agreement is very good, This result shows the
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importance of evaluating € to determine whether the theory can reasonably be applied
to any particular configuration and free-stream conditions,

As an additional comparison with the present method and the experimental data,
drag coefficients based on the simple Newtonian pressure equation Cp=2 sinzﬁb and
on inviscid conical flow were calculated and are presented in figure 5. The Newtonian
prediction and inviseid conical solution drag values are low since viscous interaction
effects on the surface pressure become important on high-fineness-ratio bodies at high
Mach numbers.

As noted in reference 22, entropy layer effects become important for power-law

Y+1

2y + 1

tions (which do not include these effects) can be expected to be poorer in that range, A
less subtle limitation oceurs at m = 0.5, where Ny = 0; that is, the ratio of shock-wave

exponents less than m = (m =~ 0.63 for ¢ = 1.4); therefore, the theoretical predic-

radius to body radius becomes infinite. This case is the ""blast wave" solution for blunt-
nosed bodies of negligible thickness (for example, a cylindrical rod) as described in
references 15 and 22, For bodies with nonzero radius, as in figure 5, the predicted
shock-wave radius goes to infinity as m — 0.5 and so does the wave drag. Thus, the
theory is not useful for the blunter shapes.

Wing, conical-body configurations.- Theoretical estimates for wing conical body
configurations can be compared with the experimental data in reference 23. The bodies

in this reference were halves of right, circular cones, corresponding to m = 1. The
wings were thin flat plates, The normal- and axial-force coefficients for configurations
with the first-order Mach number and boundary-layer thickness corrections to the wing
planform shapes are presented in figure 6, The present theory is in good agreement
with the experimental data near an angle of attack of 0°, but deviates from it elsewhere.
The deficiency in the angle-of-attack method is such that the errors in C A and Cy
are generally about equal and in the same direction. This condition results in the good
prediction of the lift-drag curve (drag polar) shown in figure 7, which produces lift-drag
ratios agreeing well with the experimental values, Figure 7 also shows the pitching-
moment coefficient, the theofy generally agreeing well with experiment near « = 0°,

Other data for comparison with theory may be found in references 6 and 7. The
wings for the configurations tested had delta planforms with several leading-edge sweeps.
Consequently, they cannot match the shapes used by the theory, but at small angles of
attack, where the wing alone produces little lift or drag, the aerodynamic coefficients
should be comparable if they are based on the areas of delta wings approximating the
theoretical planforms. Figure 8 shows such a comparison at Mach numbers 6.86 (ref. 6)
and 20 (ref. 7). The theoretical drag polars and the lift variation with angle of attack
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at M =6.86 agree well with the experimental points, especially near « = 0° (fig. 8(a)).
The pitching moment about x = 21/3 is predicted well near Cp, = 0, but the slope shows
an almost neutrally stable trend whereas the experimental data show the configuration to
be somewhat more stable. The difference in the distribution of wing area between the
experiment and theory would contribute to this effect,.

Maximum lift-drag ratios for the same configurations {and some with smaller cone
angles) in helium at Mach 20 are shown in figure 8(b). The predicted values agree fairly
well with experiment considering the differences in wing shape and area.

Example Application of Method

The preceding comparisons with experimental results have shown that the present
theoretical method gives good predictions of the 1ift, drag, and lift-drag ratic and fair
estimates of the pitching moment for small angles of attack as long as the basic assump-
tions of the theory are met. Thus, the method should be useful for studying the general
characteristics of the power-law-body flat-wing configurations at high Mach numbers.
Just two parameters, the power-law exponent m and the fineness parameter f, com-
pletely specify these body shapes. For the wings the Mach number is the principal addi-
tional parameter required, although the Reynolds number, ratio of specific heats, and wall
temperature also enter through the boundai‘y-layer growth perturbation. In order to
assess the effects of these three main variables, the theory was used to predict the aero-
dynamic characteristics of a family of full-scale configurations at twe Mach numbers.
The chosen altitude was 30 km for which the unit Reynolds numbers are 2.21 X IOG/meter
and 4.42 x 108/meter at the chosen Mach numbers of 6 and 12, respectively, based on the
1962 standard atmosphere (ref. 24). The body volume was set at 2500 m3, giving lengths
of 28.2 m to 78.1 m (approximately 92,5 ft to 256 ft), for 0.63 =m =1 and 2.5 =f = 10.0.
Additional assumptions were y = 1.4 and a ratio of wall temperature to total temperature
of 0.41667. For each Mach number the range of the fineness parameter was chosen to
keep 52<< 1 and 512 << 1. The results of these calculations are presented in figures 9
and 10,

Effect of power-law exponent.- Varying the body power-law exponent while holding
the fineness parameter constant at f =5 for Mach 12 flight at an altitude of 30 km pro-
duced the curves shown as figure 9{(a). The drag polars in the range 0.63 =m 0,75 all
cluster together, and hence so do the lift-drag ratios. Only in the conical case (m = 1)
does the drag fall significantly higher and the lift-drag ratio lower. The pitching moment
does show a major variation with m, both in slope and intercept. As m decreases
from 1.0 to 0.63, that is, as the nose becomes blunter and the aft end less flared, the
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zero lift pitching moment Cm,0 increases. At the same time, the stability decreases,
configurations with m < 0.75 becoming unstable for the moment reference center at

% = 0.6,y = 0-151-’1), B. Since the effect of m on the lift-drag ratio is relatively smalj,
this parameter could be chosen to minimize the trim drag,

Effect of fineness ratio.- The computed characteristics for a range of values of the
fineness parameter f are shown in figure 9(b). For this family of configurations, the
power-law exponent was set at m = 0,75, and the curves are for Mach 12 flight at 30 km
as before. Atlow values of f the peaksin L/D are low and broad and become higher
and sharper as the bodies become finer. The stability of the configurations is practically
unaffected by variations in the fineness parameter, as indicated by the almost parallel
pitehing-moment curves,

Effect of Mach number.- Figure 9(c) shows a comparison of Mach 6 calculations
with those for Mach 12 for configurations having three of the power-law body shapes.
Note that the change in Mach number makes a change in the wing planform for each body
shape. The effect on the drag polars shows clearly in the three sets of curves. At
Mach 6 the zero lift-drag coefficient CD,O is higher but the drag due to lift is lower
than at Mach 12. Since the curves cross before (L/D)yax is reached, the Mach 6
curves of L/D peak higher and at larger Cy, values than the Mach 12 curves. If
the same reference area had been used, the Cjp, difference would have been larger
since the Mach 12 design wing is smaller. The pitching-moment curves are little
affected by the Mach number change.

Summary of calculations.- The results of the Mach 6 and 12 calculations for flight
at 30 km are summarized in figure 10. As was indicated in figure 9, the effect of the
power-law exponent m on (L /D)max is relatively small. For the low fineness ratios,
the curves form broad maxima centered near m = 0.7; they become more peaked and

move toward m = 0,8 as the fineness ratio increases. This result compares with the
value m = 0.75 determined from the Newtonian pressure law as the power-law exponent
for minimum drag bodies under length and diameter (that is, fineness ratio) constraints,
There is a stronger dependence of the associated lift coefficient CL, (L /D)max 00 the
value of m, particularly for the less fine bodies. The effect of the fineness parameter

on (L/D)yax and CL,(L /D)max 18 oPposing in that increasing f increases (L/D)pmax
(and its dependence on m) but decreases CL, (L/D)max {(and its dependence on m).

(At any given lift coefficient in the range of calculation, however, L/D can be increased
by going to a finer body; see fig., 9(b).) The curves of UL /D)pax 2T€ included in fig-
ure 10 in order to show that the calculations of (L/D)jmax occur within the range of small
angles of attack for which the present method gives its best results. (See fig. 6.)
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CONCLUDING REMARKS

This paper has presented a method for calculating the longitudinal aerodynamic
characteristics of a family of configurations in hypersonic flow. These configurations
each consist of a half-axisymmetric power-law body surmounted by a thin flat wing for
which the planform matches the analytical shock-wave shape about the body at an angle
of attack of 0°. The method is based on the power-law similarity solutions of the hyper-
sonie small-disturbance equations. These solutions require three basic assumptions;
the Mach number is large, the body is slender, and the shock wave is strong, A first-
order perturbation allows the calculation of Mach number effects, and a perturbation to
the body shape provides for the boundary-layer growth, Skin friction is accounted for
by using compressible, laminar boundary-layer solutions at the computed pressure dis-
tributions integrated over the body and wing surfaces. A computer program has been
written implementing this method; sample computations using the program have taken
only a few seconds per case.

. When compared with experimental data for axisymmetric power-law bodies and
for wing —conical-body configurations, the present method gave good agreement where
the basic assumptions were satisfied. An example series of computations with varia-
tions in the principal parameters at a full-scale flight condition showed that varying the
power-law exponent has a greater effect on longitudinal stability and trim than on the
lift-drag ratio. The computations for Mach 6 gave higher maximum lift-drag ratios,
higher drag coefficients at zero lift, but essentially the same stability characteristics
as their counterparts for Mach 12,

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., October 25, 1973.
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APPENDIX

COMPUTER PROGRAM FOR CALCULATING
THE AERODYNAMIC CHARACTERISTICS OF POWER-LAW
WING-BODY CONFIGURATIONS

The calculation procedure described in the main body of the paper for obtaining
the aerodynamic coefficients for power-law wing-body configurations at hypersonic speeds
has been programed for high-speed digital computation. The program will also compute
the zero angle-of-attack drag for an axisymmetric power-law 'body alone. The purpose
of this appendix is to provide a description of the necessary input and available cutput as
well as 2a FORTRAN IV (ref. 25) listing of the source program. A separate program to
compute the parameters needed to obtain two input values from the figures of reference 20
is also listed and described.

Description of Program

First, the program reads all the input variables describing the case to be computed.
After calculating geometric constants, it goes through the angles of attack, computing the
body axis forces and moments, interpolating the similarity solution parameters from a
stored table, Skin friction is caleulated for each angle of attack and added to the axial
force. The results are then transformed to the stability axes, If at least three angles
of attack are included in a case, a quadratic interpolation of the drag polar is made to
obtain (L/D)yax and other quantities, which are printed out along with the body- and
stability-axis coeificients. A summary subroutine assembles certain quantities for sep-
arate printout after completion of all cases.

Program Listing

The FORTRAM IV listing of the source program used on the Control Data series 6600
computer system at the Langley Research Center is as follows:

PRUGRAM HYPAERD(INPUT=201,00TPUT=401,TAPFS=TNPUT,TAPET=401) A 1
C HYPERSONTC RERODYNAMIC CHARPACTFRISTICS COF POWER-LAW WING-BDDY CONFIGURATIONS

DYMENSTON HEAD{8), Y(6)y YE(S), VARD{13,6}, VART{13), ANGL(1l), A
SINE(LY), COSE(1)), PBBPOLI11), CFDCFOL{ll)y PUPIQT(1l), CNB(11l), A
CNOT1IL), CNW{11}, DPSAYQS(11), CN(11), CAP({11), CAF(1l), CA{ll), A
fL{L1Y)y CO(11), CLCO(1V), CMCGI1Y), CDANGLI(11,2), CDALO(2), A
COALNIZ)y X{19), XWI19}, PB(19}, DSWLCS(19),y DSWCSL{T:f}, A

A
A
A
A

LIV

N

FCSSL(18), TXSE(18)y DELR{181, PTWPl(18}

EQUIVALENCE {Y,ETAB), (Y{2),F0)y (YIE€)aAL1)y (YE,ETABE),
1 (¥YR(2)+FO0E)y (YE(3)4F1E), (YE(4),4DI0E)y (YE(S}4DILE),
? (ANGL,CD{12),CDANGL{12))

[= 3N I T B R B U )

-
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APPENDIX — Continued

FOMMON 8P, Z1ME, E2U2, FOEy F1EK, THG12G, THMyEMBF 2, D2MEZK y X2My WINGFO1,
FYITK,DLR 3 FTR,ONETR, XSEyGMA,GMLyGML12,GPI2,EM,EMT,EM22, IMM, ZEMI],
THP 2M, AMCH2 s DEL » TWHEM, AEP

NAMELTST /DATA/NCASE,GAMyTINF AMCHeNALF g ANGLEMyFyPEL 4SSBy XCGo YU Gy

. PRET, CAFACTR,ANGO, XOUT,PBRPOLyCFDCFOL ALAMCR,BDYONLY sDEL+EPS¢XSE

FCUT/T gANGy ANGOyFME YEZEMTZCAFR2,CAFU,CAFL,AT,PTWP])

RY = FM, YARD = ASSOCIATED VALUES OF ETAB,FO+F1,0J0,DJ14A1 FROM TABL

NATA Xfﬂ.'.0003'.0006|.0009'-0012'-00181-0024'.0036g-005,.0085'
.015',025,.045,.05'_14'.2§'.§5,.7,1.[' Pl PIF,DTOR/3.14159265359,
2.E584R08,.01745329252/y KPyLLIMyMLyMLL,NCASE/=2,1941841741/y
VDRY,VARU/!.'.95|.9|.853-B'.756-7'-666667'.633333,-61-55'-531.511
eC14034, 910348, 90665 4.89743,.88798, .BT507,.85648,.8388,.8139],

e TTALT 666 6, ,B56501,.37221y 07485, 86 T11448163,.T8B1T4,.T74265,
WEQROA FGRE2 s AP T634 a506N3, . 514T8,y .42678+.385,.2275Ty L9179,
160591'1.?30611.A336'l-6857,!.9311’2-2986'2.496492.6392'2.65931
2425147 887hs 1,411y «0T227%,.075099.07909,.08303,,08799.094404,,
21N218,.117984.12129,.,135%4,.17318,.20119,.25443, «0B&1,.09551,
11 08b e 130679215918, 420098126858y «3255629.40794y.517563,.74558,
WBEABT1.0%11y «4T7569,.52709,.586040.6%2919.T2741,.80732,.885631,
2032164 L0ASRE, ,9B034, 96T 4. 963TTy.97529/, GAM/1l.4/y
SRy THTT g PEPT 4 CAFACTR p Xy XOUT /00 pa215667 eyl el0yoFALSEL/

LNGICAL TEFMIN,RDYONLY,, WING,XDUT

EXTERNAL FUNY

ROYONLY=.FALSE,

PEAD 8, HEAD

TF (ENDFILF B 22,42

READ DATA

CLOMX=N.

COMTN=%Y,

TFPIN=LFALSE.

GN TO {(2p445906)y NCASE

AS5E = 1) GAM, 2} AMCH,TINF, 31 £M, &) F,RPEL,55B HAVE NEW VALUES

GM1=GAM=-1,

IGNL=2./6M]

GM12z,S*GML

CPI=GAM+]L,

GP17=,R%GRL

ED01=1./GP12

GMA=GAM

GPl4=,25%2GP]

IGG1=GAMEZGM]

IRIG=~4, /216G

IGPG=GMT-,F

GPLIC=GPYVEGMT

GF=. 1252 2GAM)*+] [ S*GPL2%2GP1G
GXY==GMIFGMT

GAT=—.2T/GX1

THELI2G=1.=.52GX]
eTRGT=1,/S50RT(B,.*GAM)
PT1=1 21 TRTWTTH+,.6T0L
AT2=TRTT+, 34K

ATTWTT=SORT{TWTT)

AMCH2 = AMCH*AMCH

AMCHZ= AMOCHRXAMCH?

AMT=1,/AMCH2

TTATI=1.+GML 2% AMCH?
oTTTATI=SQRT{TTRTI)
SUTH=1C8. A/ {TINF=TTAT?}

ALAMS{ () +SUTH) Z(TWTIT+SUTHI}*RTTWTT
SUTHT=19B A/ TINF

C2=( {1 +SUTH) /(1. +SUTHI} }*RTTYRTY
FTC1=SORT(ALAM/C2]

TeTI=. 2734 {195+, F32%TWTT)%TTBTY
PTCIA=SAPTI(L . +SUTHTI /I TPTE+SUTHY b=SQRT(TPTIV)
GOMGEGEXPTCLRAMCHERGP1G ‘
PO=2 JEAMIRGMT

PP E DR PSRRI

17
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APPENDIX - Continued

EMP1=FMs+1,
EMPY2=,5%FMPY

EMP2=FM+2,

FMMY=FM=-1,

7MY =2, *¥EMMY

TW¥=2 *EM

THR2 M=, ~TWM

24M=2 ,=EM

EMTI=1,./FM

FEMIN=2,.,%{EMT=1,)
FM22=1,5%EMT-2,

IGM132=1  F+7MML¥GMI
IMPIT=1,/(EMPL+EM)
TWMAT=1 ./ (FMPLerMP2)
EMaT=1,/{4.%EM-1.])
STXMI=1. /(6. %EM=1.]
THRMMI =1,/ (3.~EM}
FIV2MI =1, /(% .=Tht)
FM&D19=,.40)9%EM
FMX1I=1./(1.5303=FM&019)
FMX1S2M=FIV2ZMT/EMX1]
EMXZ2=.5/(.92T&L+EMLOL1T)
IP=20.%(1.05=EM)
AT=AT1-AIZ2%EMML/(EMMI-GIT/EM4T)
CALL MTLUP {EMa¥y2413,13,6,1P,VARI,VARD)
ETABI=1./ETAB

ONETET=ETABI-1.,
IGLET=ETABI/GP12

ETR=ETAB

ONFTB8=1./{1.-ETAB)
AMCHN={1 .~ 2ZMMLI*{ AMCH=-1,) ) *¥GMI

GETIEME=GOCMG*ETAB*AT*SORT (EMGT }# (EMEEMXEQ ) %2526 /AMCHN

F1l1=F01*(A1*(2GG1l+2./GPIG-FMTI/GML)~ENTIHEMT /ZGGY)
FI=1./F

EMBF?=(EMXF] ) %2

FSQ=F*F

FMIM2F2=EMPL*EMP2/FSQ

ATRELT=1./SQR"T(REL)

ESAV=GMI*AMCH*FSQ#RTCI¥2 TRELI*RTEGT
DEL=ETABY *F]

FPS=AMY/INEL*DEL)

AEP=AI*EPS
EMSAV=4.*ESAV*&I*ETABI(EH*SQPT(FOIEH#Ill
TWEM=EMSAVH,

RESE= SQRT(GETTEMF*PTﬂFLI*D‘L**ZGIG*XE**ZGMI‘Z’
PT2P1=PTOT(RSE)

RYROLT=SQRT{AMEM*PTTTBTI#23/ (C2*REL4PT2P1]) ]
AFPX=AFP=EMX152M

EM22X=,2F%EMSAVREMX]Y

G2MRF= .69053*GH12*AMCH1*RTC3*RTPELI

EMFSAV=0.

WING GEOMETRIC PARAMETERS AND FLOW CONSTANTS

SISTSBSETARI*{1.+FMPL* [AEPXTHRMMI+EMSAVERFIY2MI))
SRRYS=1,/51STSR

IF ($58.GT.0.) SPBYS=1./S5B

S1STBYS=51STSR*SRAYS

DEL2=DEL*NEL

PIMS= . 5*PT4EMPL1*SRBYS
AVERELY=SQRT({ L. +AEP*THEM) /{PIF*(EMX 2+ AEPX4EM22X)))
X5C=zup12

ALAMCR=(;2ZMRC*RT{REL Y

PQLAM=—-PQ*AL AMCT

CFOCR=1,328%RTCIAP TRELI*RTCRELI*51STRYS
CAFLC=2 . *ALAMSAMI*RTRALT

CFOON=PT2P1%CAFLC

P Er DR e I

P I A

127
128
129
130
131
132
133
134
135
136
137
1248
139
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APPENDIX — Continued

:“ETS=EM°1*ETABt*SBBYS
=2

KK1s(ML-1) /M+1
KK=KK]+1

K=KK

MK =M% [K=2) +]
OSWEOS(LLIMY=PTINMS
PB{LLTM)=ETAB

Li=Ly 1w

€OsSsL=0.
PS=1 4+ TWEM4AEP
XWi{KK}=1.
COSSLIKK)I=1./SQRT{ 1, +EMBF2)
DO B LL=1,ML1
L=LLYM-LL

XL=X(L)

XMz=X| *:FM
DSHCOS{LI=PTMS*XM

IF (RDYONLY) GO TN 8
Pa(L)=FTAR®XM

IF (MK.NF.L} GO TC 8
K1=K

KeKe

MK=ME(K-2]+1
XWIK)=XL

XSFz, S {XW{K1}+XL)
TXSE{K)=X5SF
PTWP1(K)=PTOT2{RSE]
DFLR{K)=RSE—ETAR®XSEXREM
RSK1=RS
KML2= (XM KL) %% 2

PS=XME(L.+{THWEM/SORTIXL)+ASP)/XM12)

COYSLIK)=1./SQRT (1. +EMBF2*XM12}
DRMIS=EMETS* (RSK1-RS~RBILLI4RAIL))

OSWCSLIK,yK)=DRM1S® 25%{C0SSLIK)+COSSLIK]1)}

Li=t

D0 7 J=K1,KK
OSWCSLI Jp KI=CRMLS*COSSLIJ)
CONT INUE
DSWEOS=PIMSE{ 1 %X ([2))**EM
TF (BDYONLY) GC TO 10
XW=0, - N
XSE=.5%XW{2)

TXEE=XSE

PTWPL=PTAT2{RSE)
DELR=FPSE~ETAB*XSE#**EM
DRMIS=EMETS*{RS—RB(L1}}
NSKOSL=DRM]1S*, 25*=C0O55L (2}
DO 9 J=24KK

DSWCSL {d, L )=DRMLS*COSSLAJ)
xL1=X{&}

xL2=X{16}

pL1=RALG}

RL2=RB{1&}

ANGLE OF ATTACK VARIATION

ANGO=DELX(SR{MLI-FTAR) /(1. -X(ML])}
PRINT DATA

PRATNT 36, HEAD

NANG=NALF

pr 28 1=1,NANG

ANG=DTDR*ANGLIT )

TF {(NFASE-2) 12,711,111

PP R e 2R PP PP P

b I»I» b

140
141
142
143
144
145
144
147

181
182
152
184
185
186
187
188
le9
190
191
192
193

194
195
196
197
198
199
200
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APPENDIX - Continued

EKGO=FRAGME? Y

FPSAYO=F) FK=PRPI%FKGOD

FPSAYLI=F1CK-EKGO

FPSAV2=MNETET#{EK*DJ1E*ETELT-EKGO)

CNR{Y)=02MS2%({ FOEML®FESAV+EPSAV]}
CNCLT)=D2MS2RFNEMI*EMEXETRATAEFEAU2/ (L L ZME+ L, ) #THRZME)
CNWET)=D2MS2%{EMP1#{DJETB*EESAV+IGLIET®(EMSAV/{FRMEL-ZMML | +AEP/
1 {ZMF=EMM] ) )=EMESETPATHEGUMKFOE/THRZVNEY+FDSAVR)
FEP{T)=pTAD2MSHEMPIRFIx{ FOEMA{ 1/ { ZME +ZMM1 I +EE4U2%FEMAT )+, EAEPSAVO)
CNATI=CNR(T)I+CNDC(T)I+CNWIT) ¢DPSRYQS{T)
CMN=D2MSCEEMPIA(EMP 2% ( (FOE+DJETB) #{ 1./ ZMEM+EELU2*THMAT )+
1 ZG1ET*(FMSAV/{FAME+THRZMI +AEP /( ZMEM=ZMM1) J I +EPSAVIHEPSAV2)
CMASDZMST #EMIM2E2%{ FOEMX (1, /( ZMEM+ZMML J+FE4U2%STIXMT J+EPSAVO/ 3, )
CMrG{T ) =CMN+CMA=XSCHOPSPYRS+,. S*EMP2R {CNIT ) =XCG+LAP (T }*FI*VLG)

SKIN FRICTINN ON BCODY

FAE=FQF

E2U2=,S*EE4U2

AOC=(GAMRFMEZ /EK

AP=APQ/PT2PY

wWING=,FALSE.
CAFR2=CFCONSSKNFROEXyLLIV,DSHCOS yGAMy ALAM, FUNY)
IF (RDYCNLY) GO Tn 28

SKIN FRICTION ON WING UPPER AND LOWER SURFACES

CAFU=CFOCR*®(1.4CFROFOLLT N
CAFL=0.

WING=,TRUE.

DO 24 K=1,KK1

K1=KK=K+1

AP=APO/PTWPYL(K]}
NLR=DELR{K)

SAVIW=XWIK)

XW{K)=TXSF (K]}
CAFL=CAFL+PTHPIlK)*SKNFRCH(XH(Kl'KI'DSNCSL(KgK)'GAM,ALAH'FUNID
KWK }=SAVXW
CAFL=CAFLCxCAFL

IF (XOUT) PRINT OUT

LIFTy DPAGy, B&NC L /D

CAF{1)=CAFBZ+CAFU+CAFL

GN T 26

CAFIT)=2.%CAFR?2

CAP(T)=2,.%CAP(])

CN=0,

CMLG="a
CA{TI=CAP(T I +CAFACTRRCAF (Y}
CL{II=CN{TI*COSELTI-CAL{I)I*SINE(T])
CO(TI=CA(T I *COSF{TI+ONITIRSINEL(T)
cCLEDITy=CcL{1)/C0L Y}

1F (COMIN.LT.CO(I)) GO TC 27
IMIN=T

COMIN=CO(T)

1E (CLCDET)LLT.CLOMX) GO TO 28
cLomx=CLCO(Y)

TMAX=T

CONTINUE

te (XOUT) PRINT 36, HEAD

TE [NBNG=3) 21,429,29

QUADRATIC INTERPCLATION OF DRAG POLAR 10 GET (L/D)MAX, ETC.

TE (TMAX,LT.2) IMAX=2

1F (TMAX.GELNANG) TMAX=NANG-1
I XP=TMAX+])

TXM=TMA YT

¥1=CN{IXM)

¥2=C0{ TMAX]

oI Drx X De e PR

DB

Pl

= P b > I» I» I

263
264
265
266
287
268
269
270
271
272
273
274
275k
276

277

278

279
280
281
282
283

284
285
286
287
288
289
290
291
292
292
294
29%
296

297
298
299
200
301
302
203
304
305
306
anT
308
399
310
i
nz2
213
314
il B

ERY
Ny
218
319
az20
321
322

21



APPENDIX - Continued

Y2=CD(1XP)
X1=CL{TXM) A 323
X2=CL (IMAX) A 22a
X2=CL(TXP) A 325
X12=X1=X2? A 3z2s
X2?=X2~X2 A 327
TF LIFMTN) GO TC 20 A 328
X21=X3-X1 A 229
AT {Y1%X2I+Y2NXIL+YIRXL2) /{=X12%X23%X2]) A 339
KA=. 5% ([ A%[X3+X1)=(Y2=Y1}/X2]) A 31
XA2YAASY24 X2 (2 EXA=ARX2) A 332
FLMX2=XA2YAA/A A 333
1 {CLMX2.0T,.0.) GO TQ 30 A 234
FLMX=SQRT(CLMX?} A 235
COMX=2.%(XA2YAA~XARCLMX) A 235
CLCMX=CLMX/CDMX _ A 237
FALL MTLUP (0.sCDALOs2yNANGy11424KPyCLyCDANGL) A 338
TALL MTLUP (CLMX;ALPHX32sNANGs 11919 INM8X,CL,ANGL) A 339
TEMIN=, TOUE, A 340
IMAX=TMIN A 341
GO TO 20 A 342
a9 Y2221=(¥3~Y2) /{Y2-¥1) A 343
X3221=X22/X12 A 344
CLMN=.R*(¥232214{ X24X1)-X3221%({ X3+X2) ) 7{Y2221-X23221) A 245
FALL MTLUP (CLMN,CDALNy2yNANGy11,20KP4CL,COANGL) A 346
r
€ MATN DUTPUTS
r .
PRINT 37, ALDMXyALPHXyCLMXyCOMXs CDALC, COALN,CLMN A 357
CALL SUMMARY (CLDMXyALPHX,CLMX,COALNyCDALN,CL(T0) ¢HEAD,NCASE} A 348
a1 PRINT 24, (ANGL{I)3CLUN)4CDIT)CMEGETICLEDIT,CNITI4CNRIT),CNO{T) A 259
Ty CNWIT) o NPSAYQS(T} o CA{T)CAP(T ), CAF(T},T=1,NANG] A 350
NCASE=4 A 351
60 TO 1 : A 352
a2 CALL PENTSUM {CLDMX,ALPHXy CLMX,CDALD,COALN,CLITO) sHEAD,NCASE) A 353
sToPp A 354
C .
13 FORMAT (F12.2415K DEG, PUPIQL =4F10.5) A 355
22 FNPMAT (//3XySHALPHA8Xy 2HCL s BXy 2HCDy BX 9 2HCMy TXy 3HL/ Dy 9Xs 2HCN28X, A 356
1 AHCNR s 7Xp3HOND g TX g THONK 46X g GHOP 70y BX 9 2HCAy 8Xy IHCAP s TX o 2HCAF 7/ A 257
2 (FT4143Xy3F10.5,F3.2y 2Xs5F10.59 Xy 3F10.51) A 358
as FORMAT (//F8.2478H DEG.y TOO NEGATIVE FOR BODY) A 359
2 FNRMAT {1H1/20XBAY10/) : A 360
37 FOOMAT (/711H (L/DIMAX =4F8.4,11H AT ALPHA =,FTad, 26H DEGREES, A 261
T WITH CL AND €D =,2F9.4//6H CDO =,F1C.8,14H, AT ALPHA 0 =,FB8.4// A 262
2 9H CD MIN =,F1N0.8412H, AT ALPHA =,F8.4,94 AND CL =,F8.6) A 362
38 FORMAT (8A10) A 384
END A 365~
FUNCTION PTOT (RS) B 1
¢
£ TOTAL TO STATIC PRESSURE RATIO ACROSS SHOCKs AND SHOCK POSITION B2
€
COMMON DUMB(16) sXSyGAMyGNL,GM12,GP12,EM,EMTEM22,ZMM, ZEMT1, THR2ZM, B 3
1 ANCH?,DEL, TWEMyAEP B 4
€ X POSITION FOR GIVEN SHOCK RADTUS B 5
XSNO=P S B 6
“XN=R SEKEMT B T
DO Y ¥T=1,19 B8
XO1M=XN44EM] B 9
XSM=P S/ (1.+(AEP+TWEM/SQRT{XOLIMI) % (XOIM/X0) *%2) B 10
TF (XSM/XSMOLGT..999) GO TO 2 B 11
X0=XSME*EMT g 12
1 XSMO=XSM B 13



c

nleNe

- Y

r

LAM!NAP; COMPRESSIBLE SKIN FRICTION

APPENDIX — Continued

XS=XSMAREMT
60 TO 2
FNTRY PTOT2

SHOCK RADIUS AT GIVEN X POSITIAN

XSM=XSkKEM

RS2XSM+ (ACP+TWEM/SGRT{XS) }=XS*XS/XSM

XSL2M= X SMRkD
TTHX?=IDEL*{EN*XSL2MIXS+XS*ZMM*AEPt.s*THRZH*THEH*SQRT(XS]II**Z
AMZ=pMOH2ETTHX 2/ (XSL2METTHX2Z)
AMG1=GP12*AH2*(1.+GM12*AHCH2lltl.+GH12*AM2]

AMG2=GP12/ (GAMXAM2-GM] 2)
PTCT=EXP{(ALOG{AMG2 ) +GAM*ALDGIAMGL ) ) /GM1)

RETURN

END

FURCTINN SKNFRC (XsLLTMyDSWCOS,GAMsALAM,FUN]}

DIMENSTON X(19), DSWEDS(19}, XI(19)y UL19)y BETAllq'vIDCF(lq’!

1 BIT(3), B{15), TTH2{320), THTZ(2}

EQUIVALENLE (FWPP,THY2(2)}

NATA R,TTHZ!-.Z,-.I.O...05,.1,.2..3'.6;.5,-6'.8g1.|1.2.1.6,2.'

1 .293,.2485|-2205,.2095'-1993.-1845,-1725'-1627'-1547|.1479'-13Ti

L2 J128F,.12184.11164.1707, 2 26C9.38T904696y.50515.53734,.5904, 6447y
3 .69'.73165,.7703'.8408,.9044..9627.1.0677,1.1613/. s

Gy GXl.GXZ,ZGHII-.28571h28‘7143n1.285714285714;5./

AEGIN WITH X{11 = O.y XT(1} = 0., BETA = .5 (BLUNT—-NOSED 800DY)

RETA[1)=.5
TMPT2=,23209
FPTH=,28T779
6N 70 2

ENTRY SKNFRCW

BEGTN WITH X(1) = XSS, XI(1) = O., BETA = 0, (UNDERSIDE OF WING)

RETA=C.

TMRT 2=, 44]

FPTH=,220%2

XM=X+ 1% (X2 )=X)

PEPT2=P (XM}
UM=SQRT(ZGML*{PEPT2:4GXI=1,)1]

CALL MGAUSS (XXM 1o XTMy FUNL,FOF X1}
XIN=ALAMEXYTM

TH2UR=TMBT 2% XIM
DCFI1l=PEPT?**GX2*FPTH#USHCOS|II*SDRT(UN**3ITH2URI
XT(1}=XIM

Ufly=uM

DO 9 IP=2,LLIM

xp=X{1P1}

CALL MGAUSS IXM,XP,I'DXI.FUleFﬂFX.l)
OXI=ALAMEDX]

XTATPI=DXT+XIM

PEET2=P{XP) .
U(lPl=SQETIZGP1*lPEPT2**GX1-1.ll
ALNUR=AENGLUCTIPY/UM)

ALNUR2=7 . %ALNUR

NXTYTH=DXT /THZ2UR
RLAM=T.TROG*{U(IP)/UM-1, ) /DXIUTH
aET=PLAM*ll.+(PLAM—1.I*Il.0206737*DXIUTH-.20419I*DXIUTH+.344145))
KK=1

K1=0

TTERATION FOR BETA [LOCAL VELOCITY=VARTATION PARAMETER])

o T oJd=1,29
RIT2=RET
RYT{KKI=BET

TF (KK=2]} R433,3

(DATA ARE FOR TW/TY = ,

TP IPIDDN@IREP

-‘"h.‘1("\ﬁ.":'l("li"\{"iﬁﬁ‘!?'5("‘1.’1ﬂﬁﬁﬁ{"lﬁﬁﬂﬁﬁﬁﬁﬁﬁnﬂﬁﬁﬂﬁﬂnﬁﬁﬂﬁ

OO0 0
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KK=1.

PA22p1T{3}=RIT(2])

A21=RIT{?)~-RBIT{1)

TF [ABS{B21+B22). LT, ABS(B32}) GO TO &
BOENOM=B32-821

TE {BNENDM,EQ.0.) GO TO 6
BET={BTT(1)=BIT{2}-RIT(2}%%2}/BDENDM

K1=0

GO Ta &

AET=(RTT(214BIT(20)/2.

6O T &

KK =HK+K?

K1=1

T£ (RET.GT.2.) BET=1.4

FALL MTLUP (BET,THTZ,2,15,15,1yJP3By TTH2)
AET=ALNUP 2/ (ALNUP #ALOGE L L #0XTUTHE (2 -BETI*THT 2]
TF (ARS(RET/BITR=-1.)-.0001) Bs8¢7
CONTINUE :

PRINT 114 XP,BITR,RET

BETA{TD}=RET

CALL MTLUP (BET,THT2,2415,15,24JPyB4TTH2)
TH2UP =(7  +DXIUTHA{2 . =RET ¥ THT2 }*TH2UR
DCE(TP)=PEPY 2% X2 ¥ FWPP%NSHOOSE IPYASQRT (UL TP I 2¥23xTHY2/TH2UR)
XM=XP

XIM=XT{TP)

uM=U{Te)

TF {LLTM.EQ.2) GO TO 10
SKNFRC=SUM[XyDCF,LLTM)

RETURN

SKNFRC=.F#{DCF+OCE(2) )% {X(2)-X)

RETURN

FNEMAT (/726H BETA UNGCONVERGED AT X/L =,FB8.5,12H BETA VALUES, 2F12.8

1}
END

SUBROUTINE FUN1 {X,FOFX}

INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICYION

COMMON AP, J1MEyE2U2 4FOE F1EKy THGL2Gy TWMEMBF 29 D2ZME2K 9 X2My WING
LOGTCAL WING

X2M= Xk THM

X2=X*%X

TF (WING) 2,1

XF=X2M

X2=1./7{X2%K2M)

GO TD 3

XF=1.

XZ2=X2M/X2

CFOFX=PZ (X} %4THGL2G*XF+SQRT{1.+EMBF2¥X2)

RETURN
END

FURCTION P (X

BOCY 0OF WING SURFACE PRESSURE

COMMEN AP g ZIME R E2U2 s FOE W FIEKy THGL2Gy THM EMBF 2, D2ME2K ¢ X2MyWINGsFO1y

TFLIKyOLR ETR,CNETR,DUMB{13 ), THEMAEP

LOGTICAL WTING
X2M=X%%TWM
ENTRY P2

TF [WING) 241
FYCE=FNE
FTIEK=F1EK

GO TO 3
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XM=SQRTIX2M)

ETP=((!UtR+ETB*XMlIIXM+(THEH*5QRT(X)GAEP‘XI*XIKM)-ETB)*DNETBI**Z

FYCE=FOFE+ETR*(FO1-FOF)

FT1FK=F1FEK+ETR*{F11K-F1EK}

XZ2IME=X%x*7]1ME .
P=ﬂp*t(1.+E2U2*X21HE!SORTin)*FTOEI(XZIME&DZMEZK)*FTIEKD
IF (P.LT.1) RETURN

PRUNT 4, P.X.EZUZ-DZMEZK,ETR.FTOE,FTIEK

P=,9999996992%

RETURN

FORMAT (&H P =4F13.%,14H SET = 1. AT X =9F10.5910Xs5E13.51}
ENC

FUNfTIDN SUMIXyeYaN)

TRAPEZNTDAL INTEGRATION FOP UNEQUAL INTERVALS

DIMENSTON X{19)4¥(19)
M=Ne?
PSUM=YR(X{2)=XI+Y(NIEIXINI=-XI{M})
ool I=2,M

PSUM=DSUMeY {THFIXAT+#11=X(1I-1))
SUM=_FxpSUM
PETURN

END

SUHDOUTINE SUMMAPY{AsByC 4DsEgFeHyN)

COLLECTION OF SUMMARY RESULTS NN & FILE (TAPET) FOR SEPARATE OUTPUT

OIMENSTION 0f(2)y F£(2), HIB)y LI2F), N114,?5)
NATA L, T,SKIP/26%0,2H{/}/
IF (N=2] 1,242

1F (L{1}.EQ=-2) GO TO &

1=0

LiT+1)=1

T=T41

C(t1eT)=t

ﬂ(2'1)=ﬂ

Q{3,7)=C

N{4,¥1=0

N5, 1)=012)

016, 1)=E

C(T,T)I=F(2)

D{g,T)=F

N{9,T1=H{2]

ctin,1)=H{s}

NEL1,1)=H{R)

011247} =H(A)

0(131!'=H(7|

n{14,1)=H(B)

TE (1.LT.25) RETURN

ENTRY PENTSUM

WRITE(7+9)

oo T‘hlyl

1F (L{J).FQa1} WPTITE(T.SKIP)
HP!TE!T!B) (00Kyd) oK=1y14)
LeJgi==a ’

1=0 X

tE (N.LT.2) GC TO 2

RETURN
FORH@T‘X2F9.4|F8-5'F9-5'F8-29F9-4'F8-2gF3¢5,3x|6510)

FORMAT{1H1/16H HYPAERD SUMMARY £/ 2X ySH(L/D) pF Xy SHALPHA s 4 Xy ZHCL ¢ 2 Xy

1 2(5X'2HCD|5Xj5HALPH&l.4X'2HCL/7K.3HH&X,2X;2(3X.5HL!DMX|.
2 Z(éX,‘HO,BX),Z(EX,3HMIN|6X).3H§=0)
ENC

nmMmmMmMmMmMmMMmMMMmMmAMMmM

T T TMAT

mc:ocamcsoc1mcmnawncnc)m:\mcﬁmcﬁm:amcsmcwmsvncwoc)mcwo

Ll A O0 =l O U N
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APPENDIX — Continued

Input

A single case consists of the determination of the aerodynamic coefficients over a
given set of angles of attack. The first card for each case provides a heading for the
printout; it consists of 80 columns of any desired FORTRAN characters. The remaining
cards for each case are interpreted by a system loading subroutine (NAMELIST) which
is very flexible. The data block begins with an arbitrary name (3DATA in the present
case) and ends with the dollar sign ($); the variables between may be in any order and
need appear only if values are to be different from those preassigned or used in the pre-
vious case of the same computer run. Column one of all these cards is blank, A descrip-
tion of the input FORTRAN variables with their correct type and preassigned values (if
any) in parentheses is as follows:

FORTRAN variable Description

TINF free-stream static temperature, T, °R (real)
AMCH free-stream Mach number, M, (real)

NALF number of angles of a.ttack, maximum of 11 (integer)
ANGL angle-of-attack array, decreasing order, deg (real)
EM power-law exponent, m (real)

F body fineness parameter, f (real)

REL Reynolds number based on body length, Reo; (real)
SSB ratio of reference area for coefficients to body "

planform area; if zero, program uses wing
planform area (real;0,)

XCG ratio of x location of moment reference center to
body length (real)

YCG ratio of y location of moment reference center to
maximum body radius (real)
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APPENDIX - Continued

FORTRAN variable Description

PBPI ratio of base pressure to free-stream static pressure
(real;l.}

CAFCTR mulfiplication factor times calculated laminar skin

friction (real;l.}

XOoUuT extra output at each angle of attack if
XOUT = .TRUE.(logical, . FALSE.)

PBBPOL array of NALF values of wing upper surface pressure
<f> - Py

parameter X
cr

in ref, 20) corresponding to

angles of attack ANGL (real)

CFDCFO01 array of NALF values of wing skin-friction parameter

Cr,a . .

_ I8 _ 1 inref. 20| corresponding to angles
CF,O,cr

of attack ANGL (real)

BDYONLY set equal to .,TRUE, for axisymmetric body only,
.FALSE. for half body with wing (logical; .FALSE.)

NCASE indicator for each additional case of a run to avoid
unnecessary recomputations (integer; 1 initially,
4 each case thereafter). After first case of a run
gset NCASE = 2 if AMCH or TINF is changed; set
NCASE = 3 if EM is changed but AMCH and TINF
are not; for no change to AMCH, TINF or EM use
preassigned value 4.

Cutput

There are four possible output blocks for each case, only two of which always
appear, First comes the input list with four added variables. These are GAM, the
ratio of specific heats 7; ALAMCR, a parameter (A.,) from reference 20; DEL, the
slender body parameter &; and EPS, the shock strength parameter €. Next is a
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list of the angles of attack with the pressure coefficient, Mach number and sine squared
of the shock angle for oblique shock, and with the pressure coefficient and Mach number
for Prandtl-Meyer expansion through the angle (appears only for new Mach numbers).
Third is a list of variables used in the angle-of-attack and skin-friction calculations,
which appears only if called by setting XOUT = .TRUE. in the input list. Fourth is

the standard output of stability-axis and body-axis coefficients with the interpolated
(L/D)max- The normal-force coefficient is also broken down into contributions from
the body CNB, the body boundary-layer area under the wing CND, the rest of the under-
wing area CNW, and the wing upper surface DP/Q. The axial force is broken into the
contribution from the pressure CAP and from the skin friction CAF. In addition to these
results, after all cases have been run, a summary of results is printed out for cases with
angles of attack.

Example

Input cards for a run of two sample cases are presented below, The first case is
for the complete configuration with m =075, f=7, at M, = 12, Reo = 256.26 x 108
and 11 angles of attack. The second is for the axisymmetric body having the same
parameters,

POWFR~LAW TRANSPORBITER: MACH 12 EM=,7500 F=7.00 REY=4,42F6/M  PRAGE=PTINFINTT
SDATA AMCH:]?.,EM:.?G.F:?.‘PEL=256.?6F6-TINF=QQR.viCﬂ:.hoYCG=.]59
F’F‘GDOL'-:E‘.SF).].]993.5293.71n3-°9a.0904.77n“.ﬁ?’“.QSG‘:.?“'q-E-

CFNCFOl=- 070a0hra30038708P1,52146254R6+1,0911,354],5%s
I‘\JJ\L!-'=11y.M\IﬁL:f*.*!?..q1-;.590.9"'.“5'-1.0-7‘.-"3.0“‘-%""’.‘R

POWER=LAW RODY 0OF RFVOL MACH 17 EM=,7500 F=7.00 REY=4 ,42EA/M PRACFE=PTMFINTT

$04TA NCASE=?!RDY0NLY=-TPUF-nNAlF=1oANGLf1)=0.-DQRDOL=“.~CFDCF0|=0.*

The output for these input cards is shown below. The total computation time on a
CDC 6600 series computer at the Langley Research Center was less than 15 seconds
{(excluding compilation).

$0ATS

NEASFE = 1y

Gam = CLVEFHCT,
TTNE = C.ENEEMNY,
AMCH = 0.1°FR0P,
NALF = 11,
ANGL = DL3E4D1,  0.7Ce0),  0.1E401, NLRESDC, 0.0, =0.56400, —0,1E+01,
—C0. 26497, —0L3F4AY, -0.6%e01, -N.5E407,
EM = £,77640n,
F = 0.TFENT,
PEL = 0.25F26F#N9,
SSR = r.n,
Coxre T= Q.6Fene,
¥CG = D 15F+CN,
PERT = 0.1F+1Y,
CAFICTR = Q.1F+M,
ANGO = =0, 111768 TTIF4T4SFe0D,
XCUT = F,
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ARBROL

CFOLFM

BLAMCR

RDYOKL Y

OF1
EPS
X3SE

SEND

(LANIMAY

€0 MIN

ALPHS

]

1
o

SOATA

NCASE

GAM

TINF
AMCH
NALE

ANGL

Em
F
REL
558
e
Y6

PBPL

CAFALTR

ANGOD

ADUT

PBRPOL

CFDTFOL

R

T T e I = i ]

)
raes |

2.00
2.00
1.09
«FQ
—.%n
=1.90
=7.00
=-21,00
—4.010
-E_ AR

1l

DEG,
OEG,
DEG.
nFa,
OFG.
OFG,
NEf.
OFG,
OEG.
BEG.

0.28fF4n1, o0.315%
0475540y, 0,477F
0.5FE+ny,

=0.TE-01, A,6E-014
0.52F+00, 0.B4F+Q

ML ATE.a,

POWER-LAW TRANSPNORAFTER

PURTDT
PUPTRT
PUPTO!
puUPTGT
pUPTDT
PUBTDT
PUPTDT
PUPTDL
pUPTOT
PURTQE

I I I ]

+01y  C.3F2S401,
+0%,  QLAA2ED],

0. 23E+00,
Oy D.109F+01,

2e9NEI A1 TRATETE-C2,

Q. LE22972245C4277E+00,

0. 260042 2FQ2DLARE+00,

-« 0060
-.006%4
-.002°7
-.70137
.narrs
Lanzan
L0074
.QLze?
.07 BRT
02637
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Q.32€+00,
0.135E+01,

MACH 12

0.2TIE+01,
N.aSsE+01,

DeG2E+DD,
0.159F+01,

0.39E+01,
G.524E401

D.52E+004

R.B&68 AT ALPHA = ~,02P% DEGRSFS, WITH CL AND CD «034100 .00%B3Z
roe = L010282301, AT AL PRA N = ~3,3872
+0N2B2%5C, T ALPHA 3 -32,4947 &ND (L =-.0C1197
'
N o cw L/ TN tna CNO
.713%08 07211 4.97 05478 42397 .09011
«E371 «0072& .30 0TE50 03764 «00011
L00701 =.00192 SaER aNa42T N3 TA 00011
+NNETE -.0024 579 03934 02897 00011
L0587 ~.00647 R.8% 03432 2832 00011
.N0507 =-.00553 5.78 02931 .0238L « 00011
Rl le) -.30754 S.54 202428 -02142 = 00711
01420 0389 ~.0112% 4,20 01415 01708 00011
LCD&NA 10289 -.ME7Z .28 +07284 01332 «00011
- .BOREL 00789 -.D2105 —-2.26 -.ON672 «01018 . 00011
-.01737 «10743 - 0273 =£.06 =.01T&0 DOTET . 00011
2y
0. 14E+C1,
D.40BE#CT,
0.126+02
1y
TG0y C+e2E+01ly Q.1E#0l,y, OQ.5FE+0Cy D.0p —0.5E6+D0y —CalF+01,
—0.2€401y —DTE+D1, —-0.4E+01,; —J.5E+D1
0, 75E+C0y
A, TE+O1y
0, 256266409y
3.04
0.65+00y
0.15F+00y
0.15+01y
G.1E+07,
-0, 111 TEBTT1ELT4EE+DD,
0.0, O0«319E+01l) O.352E401, D.371E40Yy C.39E+0ly 0.40%E+01,
Q. 42TE+0Ly  DL46ZE+#01,  0,595FE+D1, O0Q.524E+01, Da55E+d1,
0.0y C.HhE=0ly Q.23F+00, 032E+00, 0.,&2F+¢00y 0.52E+ND,
0.A2E+00y D.B4FE+0T, D0.109%+01y 0.135E+01ly 0.1%95+01,

CHw

+01492
01250
#0427
«00923
-00825
+00731
= 00845
+ Q048
00347
00234
00144

EN=,7EQD Fe7.00 RAEYw4.42E6/M PBASE=PINFINIT

DP/Q

-00578
+ 00425
.D0225
. 00103

—200036
~a200192
-+ 00369
~-a.00788
-.01307
-.01935%
=-.02687

CA

00970
+00832
- 00T0%
+D06E&
00587
00532
«00&B7
. 00389
200310
- 00283
00190

CAP

«00926
00790
« 00663
- DO60%
00548
«00495
D044
«00352
0021
+00207
00188

CAF

00043
«00042
+ 00040
« 00040
+00039
+00039
00038
+00037
00036
-DDD38
«00035
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ALAMCA = 0.91965221T46K57E-02,

BDYONLY = T,

OEL = 0.1622522459427TE+00y
ERS = N, ZEQRELO0%9INRIEELDD,
XSE 2 0.1F99£0041&1169F=02,

$END

POWER-LAW RCOY OF REVOL MACH 12 E€FMo,TSC0 Fa7.00 REY=4,42E6/M POASE=PINFINIT

ALpPHE cL to 54 L/D CN CNB ND ChW ne/g CA Cap CoF

0.0 d.009¢0 -0liz8 D.NONOJ0 0.00 7.03I000 =07£37 200011 00825 0.,00000 -01128 01094 200032

HYPLERD SyMmany

[ 4.0 ) ALPEA e o ALPHA Lo ALPHA cL
HAX L/DMX t /DMX n [+ MTK HIN A=Q
SJRAEE - =,022F L02410 ~00783 -3,38 0028 -3.50 .03432 TER MACH 12 EM=,75%00 FaT.00 REY=&E,42EA/M  PBAASECPINFINIT

COMPUTER PROGRAM FOR CALCULATING Kg AND 2,

The main program requires as inputs values of two parameters describing wing
upper surface conditions. These values are an average wing upper surface pressure
parameter (PBBPOL) and an average wing upper surface skin-friction parameter
(CFDCFO1). They are plotted in reference 20 (figs. 4 and 11 of the reference, respec-

P-P C
tively) as 70 apg —FA -1 for delta wings as functions of Aor {a viscous
cr CF,O,cr

interaction parameter) and Ky (=-M_0). This program calculates Ky for each angle
of attack and the value of A.p for the delta wing corresponding to the power-law wing,
As mentioned in the main body of the paper, the correspondence is based on the viscous
effects, which are assumed to be approximately equal for wings with equal spans and
equal values of SS x-1/2 qr dx. For the power-law wings, this integral involves gamma

functions which are approximated analytically in the program.

PROGRAM UPPRESSITNOUT=201,0UTPUT=201,TAPEI=INPUT}

DIMENSTNN ANGL(11}, CAD(111, PO(11}), HFADI(8), PBAPOLIL1)

NAMEL TST /DATA/ REL s F o AMCH  TINFEM ) ETABFO4 ALy NCASEy NALF  ANGL 4 X7 G,

1SSB, ¥rG .

DATA GAMyTWTT  PTF ASAV/Y b, 4186 T,2.65968,0.7

GM1l=GAM-1,

GM1T=1./GM}

GMBA=GAMER, /2,

GM12=,5%5M]

GPYl4=(GAM+1.) /4,

IGGL=GAM/GML?2
1 READ 11, MHEAD

TF (ENDFILE 1) 9,2
? READ DATA

1F (ANGL.FQ.ASAV)I GO TO 7

ASAV=ANGL

0N & T=1,NALF

ANG=,01T74533*«ANGLIT )

CAO{ T} =—AMCH*ANG

IR
WA= O DD~y

PRroabPbiilllr D sl e
ot ot et
~ o

et
Nl ]
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IF ICAN(T)) 5,5,3
3 GPIKNG=GP14A*CAO(T)
RTGKA=SQRT{1, +GPLKO4&* %2}
POLT )=1  +GAMRCAN{ T )% (GPLED4+RTGKS )

PABPOL(T)=GMB3*{ATOKA+GPIRDAX{ 2, +GPLKIL/RTEKS) }/SQRTIPFA(TD) 24
GO TD & ' 25
& GML2K=1 . +GMI2#C AD(T) 2¢é

POLIT}=GMI2K®%7GG1

IF {(PO{T).LT.0.} PO{Y)=D, 28
PBAPOL{ T)=GMBAXGM] 2K *xGM]T 29
60 TO & 10
3 PO(Y )=, 31
PREPOLLT)=GMB2 32
& CANT TNYE EE
7 IM=2  %tw 34

PRINT 12, HEAD

IF (FM_FQ,RSAV) GO TO 8 EL
RSAV=FM 37
EMMI=EM-1, *8

EM&Y <L  %xFM=1,

EMEO19=,4019%EM

EMX1=1.7303-FEM4N19 ' .

EMX2=.57(.92T4+FEM4D19)

AT = 97TTR= TH2T*EMMT/{EMM] +],295%EM4])

EMG=GMI*AT*ETAR/ (EM*SQRT (2, %GAMREMAL*F() )
8 AED=ATH(FTARRF/AMOH) **2

ACPY=AFOREMXL/[5.—IM]

TTBTY=1,.+GML22AMI HEAMCH

THTT=TWHTT*TTATY

TRPTI=u2734¢1 . 1054, 522%TWTT)2TTRTY

SUTHT=198,.5/TINF

Cl=(1.+SUTHT I/ (TWTT+SUTHT ) ESQRT{TWTT}

C3=01 ,+SUTHT ) /{TPTI+SUTHY ) *SQRTITPTT )

ZEMAI2=FMGAAMCH®FXFXSQPT{CL/PEL)

EMI2X=2. 5% 2EMI2/EMX]

GZMRC = AO0SARLMY 2% (AMCH* 43 )*SQRT{C2/REL}

FREL=PYFR(EMXZHAEPX4EMIZXI /(1. +AEPH+ZIEM3Z)

ALAMTR =G2MREC /SQRT{LREL)

ORI A AR BRIt
4~
-

PRINT 10y FM FyAMCHCOEL yALAMCR, (ANGLIT ), CAOL{T )4POIT),PRRPOL(TI)41I= 58
11,NALF) 5¢

GO0 10 1 i

9 sTOP 61
€ 52
10 FOAMAT {// /10K 2HEM IX s 1HF s BX s BHMACH, 6 X3 SHCRE/L g TX 11 H{LAMBDAJCREY/ A3
L/79XsFiN. 44 2F 002 FL2u6 3 E T A/ /X "HANGLE p 6 X3 4HIK D, TXJLHIPYD T, R 54
ZHLAM=0. 42Xy 13H(P~PO) /L AMBODAy X 1 VH{CFO/CFDI=1/1/F11.2,4F11,.4,2F11 % &F

33} 1.

11 FORMAT (8810} 67
12 FORMAT (1H1,5%xB841N}) &8
END 5 Q=

Input

A single case consists of calculations for a single configuration over a set of angles
of attack, The first card is a heading consisting of any 80 FORTRAN characters. The
remaining cards use the same loading subroutine as does the main program; the data
block begins with $DATA and ends with $. The necessary input variables are TINF,
AMCH, NANG, ANGL, EM, F, REL, ETAB, FO, and Al. Of these the first seven are the
same as for the main program and the last three are from the similarity solution results.
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APPENDIX — Concluded

See figure 3 and table I where ETAB =7, F0= Fo(nb), and Al =aj. The program is
set up so that the input cards to the main program may be used with these three variables
added. Here is the input for the first sample case given with the main program:
POWER-LAW TRANSPORBITER MAGH 172 EM=, 7500 F=7.00 PRPEY=4,4PFh/ ##pos 1 DDRFSS

SDATA AMCH=124 EM=,75,F =7, (REL=286,2684 TINF=40R, e X0AZ o6y YORZ . | Se

ETAR= L B7S07+FIzeBIR06ALI=,A0737,
NALF:IIQANGL=3.!angltouSQO.Q‘HQl-lg9—9.1-3.9-ﬁ.9—9.§

Output

The output for the same case is shown in this section. In it (LAMBDA)CRE = ),
and (K)0 = Kp are needed for use with reference 20. Also printed are the length ratio
of the delta to the power-law wing, CRE/L; the ratio of inviscid surface pressure to
free-stream static pressure, PO; and the average pressure parameter for x =0,
LAM = 0. This latter value is a useful aid sometimes in interpolating values from the
figures of reference 20.

POWFR=18W TRANSPNRRITER MACH 12 M=, TRO0 F=T7.00 FREY=4,47F€/M AkEkk PPRESS

EM F MACH LRE/L [LAMBDAICPE
7500 7.00 12.00 1.056164 9. 19£840F=n2
ANGLE {10 P19 LAM=0, (P-PO) /LAMBDA (CED/CFN) =1

2.00 ~. 6287 2290627 2.66866
2.00 -.4189 .54202 2.99986
1.00 -.2094 « 74116 3.3R458
.50 «.1047 +86229 2.54092
0.00 =0. 0000 1.00000 2,73332
-.50 21067 1.15611 3.92899
=1.00 L2094 1.32227 4,12332
-2.00 «4189 1.7520% £,4987)
-2,00 L6282 2.27170 L.BL51S
~4,00 .8278 2.90224 515051
~5.00 1.0472 2.65262 S.L14T2
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TABLE I- SOLUTIONS TO THE HYPERSONIC SIMILARITY EQUATIONS

FOR POWER-LAW BODIES OF REVOLUTION

m My Fo(r;b) Fl(nb) I 3 a;
y=7/5 ]
1.00000 0.91492 0.87342 0.9179 0.07323 0.08410 0,47546
.95000 .91034 .84711 1.0591 .07589 .09551 52709
.90000 .90465 .81630 1.2306 .07909 .11044 58604
.85000 .89743 78174 1.4386 .08303 .13067 .65291
.80000 .88798 74265 1.6887 .08799 . .15918 12741
75000 .87507 .69806 1.9811 09444 .20098 .80732
10000 85648 .64662 2.2986 .10318 .26459 .88631
66667 .83880 60763 2.4964 .11098 .32565 .93216
.63333 .81391 56403 2.6392 12129 40794 .86566
.50000 17647 .51478 2.6593 .13564 51763 .98034
.55000 66414 - 42678 2.2510 17318 14598 96791
.53000 .56901 .38500 1.8876 .20119 .86687 96377
.51000 .37221 .33757 1.4110 .25443 1.04110 .97539
.50500 .27299 .32450 1.2766 .28069 1,11845 .98249
.50000 .00000 .31077 1.1366 .35808 1.36841 99182
v = 5/3
1,00000 0.87041 0.81065 0.7836 0.10244 0.10987 0.46531
.95000 .86429 18363 .9017 .10532 .12597 51356
.50000 .85679 15282 1.0433 .10872 .14660 .56788
.85000 .B4740 71823 1.2122 .11283 .17364 .62833
.80000 .83532 67912 1.4108 .11787 .20994 .69402
75000 81919 .63448 1,6356 12422 .25074 .76228
.70000 .79658 .58296 1.8685 .13248 .32919 .82727
.66667 17569 .54389 2,0053 .13956 .39031 .86398
63333 14719 .50016 2.0956 .14850 46626 .89116
.60000 70595 45067 2.0942 .16025 .55904 90627
.55000 59076 .36177 1.7872 .18792 73266 .91473
.53000 49985 .31912 15217 20647 .81845 92427
.51000 .32217 .26988 1.1590 .23916 .93877 .94825
.50500 .23542 .25600 1.0506 .25495 .99164 .95764
.50000 .00000 .24113. .9315 .30378 1.16431 .06872
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Figure 1.- Configuration studied, showing relation between physical
and nondimensional coordinates,
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